Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis.
نویسندگان
چکیده
Bacterial anaerobic respiration using selenium oxyanions as the sole electron acceptor primarily result in the precipitation of selenium biominerals observed as either intracellular or extracellular selenium deposits. Although a better understanding of the enzymology of bacterial selenate reduction is emerging, the processes by which the selenium nanospheres are constructed, and in some cases secreted, has remained poorly studied. Thauera selenatis is a Gram-negative betaproteobacterium that is capable of respiring selenate due to the presence of a periplasmic selenate reductase (SerABC). SerABC is a molybdoenzyme that catalyses the reduction of selenate to selenite by accepting electrons from the Q-pool via a dihaem c-type cytochrome (cytc4). The product selenite is presumed to be reduced in the cytoplasm, forming intracellular selenium nanospheres that are ultimately secreted into the surrounding medium. The secretion of the selenium nanospheres is accompanied by the export of a ~95 kDa protein SefA (selenium factor A). SefA has no cleavable signal peptide, suggesting that it is also exported directly for the cytoplasmic compartment. It has been suggested that SefA functions to stabilize the formation of the selenium nanospheres before secretion, possibly providing reaction sites for selenium nanosphere creation or providing a shell to prevent subsequent selenium aggregation. The present paper draws on our current knowledge of selenate respiration and selenium biomineralization in T. selenatis and other analogous systems, and extends the application of nanoparticle tracking analysis to determine the size distribution profile of the selenium nanospheres secreted.
منابع مشابه
Purification and characterization of the selenate reductase from Thauera selenatis.
Thauera selenatis is one of two isolated bacterial species that can obtain energy by respiring anaerobically with selenate as the terminal electron acceptor. The reduction of selenate to selenite is catalyzed by a selenate reductase, previously shown to be located in the periplasmic space of the cell. This study describes the purification of the enzyme from T. selenatis grown anaerobically with...
متن کاملQuinol-cytochrome c oxidoreductase and cytochrome c4 mediate electron transfer during selenate respiration in Thauera selenatis.
Selenate reductase (SER) from Thauera selenatis is a periplasmic enzyme that has been classified as a type II molybdoenzyme. The enzyme comprises three subunits SerABC, where SerC is an unusual b-heme cytochrome. In the present work the spectropotentiometric characterization of the SerC component and the identification of redox partners to SER are reported. The mid-point redox potential of the ...
متن کاملEcology and biotechnology of selenium-respiring bacteria.
In nature, selenium is actively cycled between oxic and anoxic habitats, and this cycle plays an important role in carbon and nitrogen mineralization through bacterial anaerobic respiration. Selenium-respiring bacteria (SeRB) are found in geographically diverse, pristine or contaminated environments and play a pivotal role in the selenium cycle. Unlike its structural analogues oxygen and sulfur...
متن کاملA bacterial process for selenium nanosphere assembly.
During selenate respiration by Thauera selenatis, the reduction of selenate results in the formation of intracellular selenium (Se) deposits that are ultimately secreted as Se nanospheres of approximately 150 nm in diameter. We report that the Se nanospheres are associated with a protein of approximately 95 kDa. Subsequent experiments to investigate the expression and secretion profile of this ...
متن کاملDesulfurispirillum indicum sp. nov., a selenate- and selenite-respiring bacterium isolated from an estuarine canal.
Strain S5(T), a novel bacterium that was isolated for its capability to respire selenate to elemental selenium, is described. In addition to selenate respiration, it was also capable of dissimilatory selenite, arsenate and nitrate reduction with short-chain organic acids such as pyruvate, lactate and acetate as the carbon sources and electron donors. The isolate was unable to grow fermentativel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 40 6 شماره
صفحات -
تاریخ انتشار 2012